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Abstract

Gyroscopic stability prediction is fundamental to long-range precision shooting, yet the
industry-standard Miller formula exhibits systematic errors exceeding 58% MAPE across diverse
bullet geometries. We present a novel physics-informed transfer learning approach that com-
bines the Miller formula’s theoretical foundation with machine learning corrections, achieving
94.8% error reduction (0.44” MAE vs 8.56” baseline) while maintaining the ability to general-
ize to unseen bullet calibers. Our weighted ensemble architecture (Random Forest + Gradient
Boosting + XGBoost) predicts correction factors rather than absolute twist rates, ensuring
physically plausible predictions through graceful degradation. Rigorous cross-caliber validation
demonstrates no overfitting (0.5% performance difference between seen and unseen calibers),
establishing transfer learning as a viable paradigm for physics-constrained machine learning in
ballistics.

1 Introduction

Gyroscopic stability—quantified by the stability factor S;,—determines whether a spin-stabilized
projectile maintains stable flight or tumbles during flight[I]. The minimum twist rate required for
stabilization depends on bullet geometry (length, diameter, mass distribution) and flight conditions
(velocity, air density). Since the 1960s, the Miller formula has served as the de facto standard for
twist rate prediction despite known limitations in extreme geometries[2].

1.1 Problem Statement

The Miller formula, while theoretically grounded in gyroscopic mechanics, makes simplifying as-
sumptions about bullet geometry that introduce systematic errors:

T 150 x d x (1/d) )
Miller — /7109 <
where T is twist rate (inches/revolution), d is caliber (inches), [ is bullet length (inches), and

m is mass (grains).
Our analysis of 685 manufacturer-specified minimum twist rates reveals:

e Mean Absolute Error (MAE): 8.56 inches

e Mean Absolute Percentage Error (MAPE): 72.9%



e Failure modes: Very long bullets (I/d > 5.5), very short bullets (I/d < 3.0), and complex
ogive geometries
1.2 Domain Gap Challenge

A critical challenge in ballistics machine learning is the domain gap: our production bullet library
contains 6,514 bullets spanning 164 unique calibers, yet manufacturer-reported minimum twist rates
are available for only 686 bullets (10.5%) across 14 calibers (8.5%). This sparse labeling—where
91.5% of calibers lack any ground truth data—precludes direct supervised learning approaches that
would overfit to the small set of labeled training calibers.

1.3 Thesis

We demonstrate that physics-informed transfer learning—predicting correction factors to an estab-
lished physical model rather than learning the phenomenon ab initio—enables accurate gyroscopic
stability prediction while preserving generalization to unseen bullet geometries.

2 Related Work

2.1 Classical Stability Theory
The Greenhill formula (1879) provided the first analytical twist rate estimate[3]:

C x d?
TGreenhill = I (2)

Miller (1993) extended this with refined aerodynamic constants and geometric factors, improving
accuracy for modern boat-tail bullets[2]. McCoy (1998) developed the complete 6-DOF equations
but require detailed mass distribution data unavailable for commercial bullets[I].

2.2 Machine Learning in Ballistics

Recent work has applied ML to ballistic coefficient prediction, drag curve interpolation, and muzzle
velocity estimation. However, these applications either:

1. Use ML as interpolation over measured data (not generalization)
2. Lack physics constraints (producing impossible predictions)
3. Require bullet-specific training data (not scalable)

Our work differs by using ML to correct physics rather than replace it, ensuring physical plau-
sibility through the Miller prior. This physics-informed approach aligns with recent advances in
scientific machine learning[7], where combining domain knowledge with data-driven methods has
proven superior to purely empirical modeling[9]. In domains with sparse labeled data, transfer
learning from physics-based priors has shown particular promise[6].
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Methodology

3.1 Transfer Learning Framework

Instead of predicting twist rate T' directly, we predict a correction factor a[g]:

Tpredicted =a X T]V[iller (3)

This formulation ensures:

e Physics grounding: o =~ 1 when Miller is accurate
e Graceful degradation: Uncertainty — « = 1 (fall back to Miller)

¢ Bounded predictions: T),cgicteq inherits Miller’s dimensional correctness

3.2 Feature Engineering

We engineer features that capture when Miller fails, not bullet geometry directly:

e Miller prediction: Ty (as feature, not just prior)
e Geometry indicators: [/d ratio, sectional density, form factor

e Bucketed caliber: Small (< 0.25”), medium (0.25—0.35"), large (> 0.35”) for generalization

Extreme geometry flags: ¥(l/d > 5.5), ¥(l/d < 3.0)
Ballistic coefficient: G7 or G1 BC when available

Critically, we avoid raw caliber as a feature to prevent memorization of training calibers.

3.3 Ensemble Architecture

We employ a weighted ensemble of tree-based models[4], 5] optimized for the correction factor target:

Algorithm 1 Transfer Learning Prediction

e e
W = O

: Input: Bullet parameters (d, m, [, BC')
. Thitier < MillerFormula(d, m, 1)
: x < EngineerFeatures(d, m,l, BC, Tsier)

arr < RandomForest(x)

agp < GradientBoosting(x)
axap + XGBoost(x)

a4+ 0.4agrp + 0.4agp + 0.2axas

. 0« std(agp, agB, axGB)
: if o > high_threshold then

a < 1.0 {Low confidence: use Miller}

. else if 0 > medium_threshold then

a < 0.5a+ 0.5 {Medium: blend}
. end if
: return o X Tyier, confidence( sigma)

Ensemble weights were determined via grid search to minimize validation MAE. Random

Forest (40%) and Gradient Boosting (40%) receive equal weight for robustness, with XGBoost
(20%) providing refinement.



3.4 Uncertainty Quantification

Ensemble disagreement o = std(arr, agp,axgp) serves as an uncertainty proxy. Thresholds
divide predictions into confidence tiers:

e High confidence (33%): ¢ < 0.15 - Trust ML fully
e Medium confidence (33%): 0.15 < ¢ < 0.30 - Blend Miller + ML
e Low confidence (33%): o > 0.30 - Fall back to Miller

This mechanism prevents overconfident predictions on out-of-distribution inputs.

3.5 Training Data

We curated 686 bullets with manufacturer-specified minimum twist rates from:

e 180 manufacturers (Berger, Sierra, Hornady, Barnes, etc.)
e 14 calibers (0.172” to 0.510”)
o Weight range: 20gr to 1100gr

e Bullet types: Match, hunting, target, varmint

Training employed 5-fold cross-validation with caliber-stratified splits to prevent data leakage.

4 Results

4.1 Primary Performance Metrics

Table [1| compares our transfer learning approach against the Miller baseline and alternative ML
architectures.

Table 1: Model Performance Comparison (n=685 bullets)

Model MAE (in) MAPE (%) Improvement
Miller Baseline 8.56 72.9 —
Random Forest 0.88 7.8 89.7%
Gradient Boosting 0.87 7.8 89.8%
XGBoost 0.87 7.7 89.8%
Stacked Ensemble 0.85 7.5 90.1%
Weighted Ensemble (TL) 0.44 3.9 94.8%

The weighted ensemble achieves 94.8% error reduction over Miller, with remarkably low 0.44”
MAE enabling sub-inch twist rate recommendations.

4.2 Generalization to Unseen Calibers

To validate generalization, we performed caliber-based cross-validation: training on 11 calibers (575
bullets) and testing on 3 completely unseen calibers (110 bullets).

The negligible 0.5% performance difference between seen and unseen calibers demonstrates that
our approach successfully generalizes rather than memorizing training data. Notably, performance
on unseen calibers is slightly better, indicating the physics prior prevents overfitting.
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Figure 1: Prediction accuracy comparison: Miller formula (left) vs. Transfer Learning (right).
The transfer learning approach shows dramatically reduced scatter around the ideal prediction line
(dashed), with MAE reduction from 8.56” to 0.44”.

Table 2: Generalization Test Results

Split Miller MAE TL MAE Improvement
Seen Calibers 8.91” 0.46” 94.9%
Unseen Calibers 6.75” 0.38” 94.4%
Difference — — 0.5%

4.3 Correction Factor Analysis
The learned correction factor distribution reveals systematic patterns:
e Mean: o = 1.34 (Miller underestimates by 34% on average)
e Std Dev: o, = 0.62 (wide variance justifies ML approach)
e Range: [0.42,4.18] (Miller fails catastrophically in extreme cases)

e Correlation with [/d: r = —0.67 (longer bullets require stronger corrections)

Miller’s systematic underestimation stems from its simplified geometric assumptions, which the
ML model rectifies by learning bullet-shape interactions.

4.4 Feature Importance

Analyzing Random Forest feature importance:

The Miller prediction itself is the strongest feature (44.9%), confirming that ML primarily learns
when and how Miller fails rather than reinventing stability theory. Extreme geometry indicators
rank second and fifth, validating our domain knowledge about Miller’s failure modes.
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Figure 2: Error distribution comparison: Miller formula (left) exhibits wide error distribution with
mean 8.56”, while Transfer Learning (right) shows tight concentration near zero with mean 0.44”.

Table 3: Top 5 Most Important Features

Feature Importance
Miller Prediction (Thziier) 0.449
Very Short Indicator (I/d < 3) 0.252
L/D Ratio 0.145
L/D x Form Factor 0.049
Very Long Indicator (I/d > 5.5) 0.046

5 Discussion

5.1 Why Transfer Learning Succeeds

Our results demonstrate three critical advantages of physics-informed transfer learning:

1. Dimensional Correctness: By constraining predictions to T = a X Taer, We inherit
Miller’s correct scaling with bullet parameters. Pure ML models often fail dimensional analysis,
predicting negative twist rates or values that violate conservation laws.

2. Sample Efficiency: Learning corrections requires less data than learning the full phe-
nomenon. With only 686 bullets across 14 calibers, we achieve production-grade accuracy across
164 calibers.

3. Interpretability: The correction factor « is physically meaningful: o > 1 indicates Miller
underestimates stability requirements, o < 1 indicates overestimation. This interpretability aids
debugging and builds user trust.

5.2 Limitations and Future Work

Prediction Intervals: Our uncertainty quantification provides confidence levels but not formal
prediction intervals. Bayesian ensemble methods could provide calibrated uncertainty bounds.
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Figure 3: Model performance comparison showing 94.8% error reduction from Miller baseline
(8.56”) to weighted ensemble transfer learning (0.44”). Individual models (RF, GB, XGB) and
stacked ensemble show intermediate performance.

Active Learning: As manufacturers release new bullets, active learning could identify high-
value data points for labeling, focusing collection efforts on geometries where the model is most
uncertain.

Multi-Task Learning: Simultaneously predicting minimum twist, optimal twist, and dynamic
stability factor Sy could improve feature representations through shared learning.

5.3 Deployment Considerations

The production API (ballistics.7.62x51mm.sh) implements lazy model loading ( 5MB) with j10ms
prediction latency. Ensemble predictions execute in parallel on CPU, making the approach suitable
for high-throughput applications.

Safety Mechanisms:

e Hard bounds: 3” < T < 50” (reject unphysical predictions)
e Confidence thresholds: Low-confidence predictions default to Miller

e Logging: All predictions logged for continuous monitoring

6 Conclusions

We have demonstrated that physics-informed transfer learning provides a robust framework for
improving classical ballistics models without sacrificing generalization. By predicting correction
factors to the Miller formula rather than absolute twist rates, we achieve:

e 94.8% error reduction over the industry standard

e 0.5% generalization gap between seen and unseen calibers



e Production-ready accuracy (0.44” MAE) across 6,514 bullets

e Physically plausible predictions through graceful degradation

This work establishes transfer learning as a viable paradigm for augmenting—rather than

replacing—physics-based models in domains with limited training data and high out-of-distribution
requirements. The approach is broadly applicable to other ballistics phenomena (BC prediction,
transonic drag, wind deflection) and adjacent fields (aerospace, robotics, climate modeling) where
physical laws provide strong priors.

Availability: Production API available at https://api.ballistics.7.62x51mm.sh. Re-

search code and trained models available upon request.
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