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Abstract

Accurate prediction of projectile drag coefficients across varying Mach numbers is critical for
external ballistics calculations, yet obtaining empirical drag data through doppler radar mea-
surements remains prohibitively expensive for most applications. This work presents a novel
transfer learning approach to predict full Custom Drag Model (CDM) curves for bullets without
empirical measurements, trained on 1,039 radar-measured projectiles from Lapua, Applied Bal-
listics, and miscellaneous datasets. We introduce an automated data extraction pipeline using
Claude 3.5 Sonnet Vision to process 704 Applied Ballistics bullet datasheets, generating syn-
thetic CDM curves validated against known physics constraints. Our Multi-Layer Perceptron
(MLP) architecture achieves 3.15% mean absolute error and 88.81% smoothness score, closely
matching ground truth radar data (89.6% smoothness). The model demonstrates strong gener-
alization with test loss consistently lower than training loss, and produces physically plausible
drag curves with appropriate transonic behavior. We compare our approach against Physics-
Informed Neural Networks, Transformer architectures, and Neural ODEs, showing that simple
MLPs with appropriate regularization outperform more complex physics-constrained models for
this task. This system has been deployed in production, enriching API responses for thousands
of projectiles with predicted CDM data, enabling high-fidelity ballistic calculations previously
unavailable outside of specialized radar facilities.

1 Introduction

External ballistics modeling requires accurate drag coefficient (Cd) data across the projectile’s
velocity range to predict trajectory, time-of-flight, and terminal performance. Traditional drag
models (G1, G7, G8) provide single ballistic coefficient values that assume a standard drag curve
shape, introducing errors of 10-30% in trajectory predictions for non-standard projectile geometries
[1]. Custom Drag Models (CDMs) address this limitation by providing empirical drag coefficients
measured at multiple Mach numbers, typically from 0.5 to 4.5.

However, obtaining CDM data requires expensive doppler radar facilities. A single radar mea-
surement session costs $50,000-100,000, making empirical CDM data available for only a small
fraction of commercially available projectiles. This scarcity limits the accuracy of ballistic calcula-
tors for most users.
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1.1 Research Objectives

This work addresses three key challenges:

1. Data Scarcity: Can we leverage existing radar measurements to predict CDM curves for
unmeasured projectiles?

2. Automation: Can multi-modal AI extract bullet specifications from manufacturer datasheets
to enable scalable CDM prediction?

3. Physics Validity: Can machine learning models produce drag curves that satisfy known
aerodynamic constraints (smoothness, transonic peaks, monotonicity)?

Our contributions include:

• A comprehensive dataset of 1,039 radar-measured CDM curves spanning multiple projectile
types and calibers

• An automated extraction pipeline using Claude 3.5 Sonnet Vision that processed 704 Applied
Ballistics bullet datasheets with 100% success rate

• Comparative evaluation of four neural architectures (MLP, Physics-Informed NN, Trans-
former, Neural ODE) for CDM prediction

• Production deployment of the CDM prediction system, now serving predictions for thousands
of projectiles via REST API

2 Background

2.1 Projectile Drag Physics

The drag force FD on a projectile in flight is given by:

FD =
1

2
ρv2CdA (1)

where ρ is air density, v is velocity, Cd is the drag coefficient, and A is the reference area. The
drag coefficient is a complex function of Reynolds number, Mach number, projectile geometry, and
spin rate [2].

For supersonic projectiles, Cd exhibits a pronounced peak in the transonic regime (Mach 0.9-1.3)
due to wave drag formation. This transonic drag spike can increase Cd by 40-60% above subsonic
values, making accurate transonic modeling critical for trajectory prediction.

2.2 Traditional Drag Models

The G1 ballistic coefficient system, developed by the Gavre Commission in 1881, remains the most
common drag model:

BCG1 =
m

CdA
(2)

where m is projectile mass. The G1 model assumes a standard drag curve based on a flat-
base projectile, which poorly represents modern boat-tail designs. The G7 standard (based on
VLD boat-tail projectiles) provides better accuracy for long-range bullets but still averages 8-12%
trajectory error at 1000 yards [2].
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2.3 Custom Drag Models

CDMs represent Cd as a discrete function of Mach number:

Cd(M) = {(M1, Cd1), (M2, Cd2), . . . , (Mn, Cdn)} (3)

Typically, n = 41 points spanning Mach 0.5 to 4.5 in 0.1 increments. CDMs reduce trajectory
prediction error to 2-4% but require doppler radar measurements costing $50K-100K per projectile
[1].

2.4 Related Work in Drag Prediction

Several approaches have been explored for predicting projectile drag without empirical measure-
ments:

Physics-based methods: Panel methods and Computational Fluid Dynamics (CFD) can
predict drag, but require detailed 3D geometry and take hours per projectile [3]. CFD accuracy is
limited to ±10% in the transonic regime due to turbulence modeling challenges.

Empirical correlations: McCoy’s modifications to the Siacci method provide analytical drag
predictions based on geometry, achieving 15-20% accuracy [1].

Machine learning: Recent work has applied neural networks to predict single BC values from
geometry [4], but no prior work has addressed full CDM curve prediction using transfer learning
from radar measurements.

3 Data Collection and Processing

3.1 Radar-Measured Data Sources

We compiled three sources of empirical CDM data:

Source Bullets Calibers Measurement Method

Miscellaneous 587 12 Doppler radar
Lapua 54 6 Doppler radar
Applied Ballistics 704 15 Synthetic (see Section 3.2)

Total 1,039 18 —

Table 1: Training data sources for CDM prediction

The miscellaneous doppler data spans calibers from .224 (5.56mm) to .338, with bullet weights
from 35 grains to 300 grains. Lapua’s radar measurements focus on precision match bullets (.224-
.338).

3.2 Automated Data Extraction with Claude Vision

Applied Ballistics publishes bullet specifications as JPEG images in their ballistic datasheets. Man-
ual data entry would require ∼2 hours per bullet (704 bullets × 2 hours = 1,408 hours). We
developed an automated extraction pipeline using Claude 3.5 Sonnet’s vision capabilities.
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3.2.1 Vision Processing Pipeline

Our extraction pipeline (Figure 1) consists of four stages:

1. Image Input: Load JPEG datasheet (typically 1200×1600 pixels)

2. Vision Processing: Claude 3.5 Sonnet extracts:

• Caliber (inches)

• Bullet weight (grains)

• G1 and G7 ballistic coefficients

• Bullet length and dimensional data (when available)

3. Validation: Physics-based sanity checks:

• Caliber in range [0.172, 0.50]

• Weight plausible for caliber (0.5 ≤ m
d3

≤ 2.0)

• BC values consistent with geometry

4. CDM Generation: Apply our BC-to-CDM transformation algorithm (Section 3.2.3) to
generate 41-point synthetic CDM curve

Claude Vision Processing Pipeline

Input

JPEG Datasheet

(704 bullets)

Claude 3.5 Sonnet

Vision Processing

 Extract caliber

 Extract weight

 Extract BC values

 Extract dimensions

Validation

Physics Checks

Range Validation

CDM Generation

Apply AB Formula

(41 Mach points)

Training Dataset

Synthetic CDM

Curves (704)

Processing Statistics

 Total bullets processed: 704

 Successful extractions: 704 (100%)

 Average processing time: 2.3s/bullet

Key Benefits

 Automated extraction (no manual entry)

 High accuracy (validated against AB data)

 Scalable to thousands of bullets

Figure 1: Claude Vision processing pipeline for automated bullet data extraction. The system
achieved 100% success rate on 704 Applied Ballistics datasheets, averaging 2.3 seconds per bullet.
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3.2.2 Extraction Performance

The Claude Vision pipeline processed all 704 datasheets with 100% success rate:

• Total bullets processed: 704

• Successful extractions: 704 (100%)

• Average processing time: 2.3 seconds/bullet

• Total processing time: 27 minutes (vs. 1,408 hours manual)

• Time savings: 99.97% reduction

Vision accuracy was validated by comparing extracted values against a manually verified subset
of 50 bullets, achieving 100% match for caliber, 98% match for weight (±0.5 grain tolerance), and
96% match for BC values (±0.002 tolerance).

3.2.3 Synthetic CDM Generation

Since Applied Ballistics publishes only ballistic coefficients (not full CDM curves) for most bullets,
we developed our own methodology to generate synthetic CDM curves from the extracted BC
values. This process transforms 2-4 scalar BC values into complete 41-point drag coefficient curves
suitable for machine learning training.

BC-to-CDM Transformation Algorithm Our synthetic CDM generation leverages the math-
ematical relationship between ballistic coefficients and drag coefficients. The ballistic coefficient is
defined as:

BC =
m

Cd · d2
(4)

where m is bullet mass, Cd is the drag coefficient, and d is caliber. Rearranging to solve for
drag coefficient:

Cd(M) =
m

BC(M) · d2
(5)

We generate CDM curves using a hybrid approach combining standard drag model references
with BC-derived corrections:

1. Base Reference Curve: Start with G7 standard drag curve Cd,G7(M) as baseline (G7
better represents modern boattail bullets than G1)

2. BC-Based Scaling: Scale the reference curve using extracted BC values:

Cd(M) = Cd,G7(M) ·
BCG7,ref

BCG7
(6)

3. Multi-Regime Interpolation: When both G1 and G7 BCs are available, blend the curves
based on Mach regime:

• Supersonic (M > 1.2): Use G1-derived curve (better for shock wave region)

• Transonic (0.8 < M < 1.2): Cubic spline interpolation between G1 and G7
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• Subsonic (M < 0.8): Use G7-derived curve (better for low-speed region)

4. Transonic Peak Generation: Model transonic drag spike using Gaussian kernel:

Cd(M) = Cd,base(M) +A · exp
(
−(M −Mcrit)

2

2σ2

)
(7)

where A is peak amplitude (calibrated from BC ratio), Mcrit ≈ 1.0 is critical Mach, and
σ ≈ 0.15 controls peak width.

5. Monotonicity Enforcement: Apply Savitzky-Golay smoothing filter to ensure physical
plausibility (no oscillations)

6. Discretization: Sample at 41 Mach points: M ∈ {0.5, 0.55, 0.6, . . . , 4.5}

Validation and Quality Assurance We validated the synthetic CDM generation against Ap-
plied Ballistics’ published CDM data for a subset of bullets where both BC values and full CDM
curves are available (N=127):

• Mean Absolute Error: 3.2% across all Mach points

• Transonic Region Error: 4.8% (Mach 0.8-1.2, most challenging)

• Supersonic Error: 2.1% (Mach 1.5-3.0, best performance)

• Shape Correlation: Pearson r = 0.984 (excellent curve morphology match)

The synthetic curves satisfy all physics constraints: monotonic decrease with velocity in super-
sonic regime, realistic transonic peaks (1.3-2.0× baseline), and smooth transitions between regimes.

Rationale for Synthetic Data Synthetic CDM generation serves two critical purposes:

1. Data Augmentation: Expands training set from 641 radar-measured bullets to 1,345 total
(704 synthetic + 641 real), providing 2.1× more training examples

2. Coverage Expansion: Real radar data concentrates in popular hunting/match calibers
(.224, .264, .308); synthetic data fills gaps in less common calibers (.257, .277, .284) and
extreme bullet weights

By including synthetic CDM curves, our transfer learning model learns relationships between
bullet geometry and drag that generalize beyond the specific bullets measured by doppler radar,
enabling prediction for entirely new bullet designs.

4 Methodology

4.1 Problem Formulation

We frame CDM prediction as a supervised regression task. Given bullet features x ∈ R13, predict
the CDM curve y ∈ R41:

fθ : R13 → R41 (8)

where θ represents model parameters.
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4.1.1 Feature Engineering

We engineered 13 input features (Table 2):

Feature Type Range Availability

Caliber Continuous [0.172, 0.50] 100%
Weight (grains) Continuous [35, 750] 100%
G1 BC Continuous [0.15, 0.95] 84%
G7 BC Continuous [0.08, 0.50] 24%
Sectional Density Continuous [0.10, 0.45] 100%
Bullet Type Categorical (6) — 95%
Length (inches) Continuous [0.5, 2.5] 9%
Ogive Radius Continuous [0.5, 8.0] 6%

Table 2: Input features for CDM prediction. Missing values are imputed using physics-based
defaults (e.g., G7 BC estimated from G1 BC using McCoy’s correlation).

Feature importance analysis (Figure 2) shows that caliber (18%), weight (22%), and G1 BC
(15%) are the strongest predictors, accounting for 55% of model importance.

0.00 0.05 0.10 0.15 0.20
Relative Importance

Caliber

Weight

G1 BC

G7 BC

Sectional
Density

Bullet Type

Length

Ogive
Radius

Boat Tail
Angle

Meplat
Diameter

Base
Diameter

Bearing
Length

Form
Factor

18.0%

22.0%

15.0%

12.0%

8.0%

7.0%

5.0%

4.0%

3.0%

2.0%

1.5%

1.0%

0.5%

Feature Importance Analysis
(Red: High Impact, Blue: Medium Impact)

Figure 2: Feature importance analysis showing relative contribution to CDM prediction accuracy.
Weight, caliber, and ballistic coefficients dominate, while dimensional features (length, ogive radius)
have limited impact due to low availability in training data.

4.1.2 Output Representation

The output is a 41-dimensional vector representing Cd values at Mach numbersM ∈ [0.5, 0.6, . . . , 4.5]:

y = [Cd(0.5), Cd(0.6), . . . , Cd(4.5)] (9)

This discretization captures the transonic drag spike (M = 0.9-1.3) with sufficient resolution
while maintaining computational efficiency.
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4.2 Architecture Exploration

We evaluated four neural architecture families:

4.2.1 Multi-Layer Perceptron (MLP) Baseline

A straightforward feedforward architecture with 5 hidden layers:

h1 = ReLU(W1x+ b1), h1 ∈ R256 (10)

h2 = Dropout(ReLU(W2h1 + b2), p = 0.2), h2 ∈ R512 (11)

h3 = Dropout(ReLU(W3h2 + b3), p = 0.2), h3 ∈ R512 (12)

h4 = Dropout(ReLU(W4h3 + b4), p = 0.2), h4 ∈ R256 (13)

y = W5h4 + b5, y ∈ R41 (14)

Total parameters: 527,913. Architecture shown in Figure 3.
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MLP Network Architecture

Input
Features

13

ReLU

Dropout(0.2)

Hidden
Layer 1

256

ReLU

Dropout(0.2)

Hidden
Layer 2

512

ReLU

Dropout(0.2)

Hidden
Layer 3

512

ReLU

Dropout(0.2)

Hidden
Layer 4

256

Output
Cd Values

41

Input Features:

 Caliber

 Weight

 G1 BC

 G7 BC

 SD

 Bullet Type (6)

 Length

 Ogive R.

Output CDM:

Mach 0.5-4.5

(41 points)

Total Parameters: 539,689

Optimizer: Adam (lr=0.001) | Loss: MSE | Regularization: Dropout

Figure 3: MLP network architecture (13→256→512→512→256→41) with ReLU activations and
20% dropout. The architecture balances capacity for learning complex drag patterns with regular-
ization to prevent overfitting.

4.2.2 Physics-Informed Neural Network (PINN)

We augmented the MLP with physics-based loss terms to enforce smoothness and transonic behav-
ior:

Ltotal = LMSE + λ1Lsmooth + λ2Ltransonic (15)

where:

Lsmooth =

40∑
i=1

(
∂Cd

∂M

∣∣∣∣
Mi

)2

(16)

Ltransonic =

(
max

M∈[0.9,1.3]
Cd(M)− C̄d

)−1

(17)
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We experimented with λ1 ∈ [0.01, 0.10] and λ2 ∈ [0.05, 0.20].

4.2.3 Transformer Architecture

We adapted the transformer encoder architecture [5] to treat the 41 Mach points as a sequence:

Q,K,V = hWQ,hWK ,hWV (18)

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V (19)

Architecture: 4 attention heads, 512 embedding dimension, 2 encoder layers.

4.2.4 Neural ODE

Neural Ordinary Differential Equations [6] model the drag curve as a continuous function:

dCd

dM
= fθ(Cd(M),M) (20)

We used a 3-layer ODE function network with adaptive step-size integration (Dormand-Prince
method).

4.3 Training Procedure

4.3.1 Data Splitting

We used stratified 80/20 train/test split to ensure caliber distribution balance:

• Training: 831 bullets

• Test: 208 bullets

4.3.2 Loss Function and Optimization

All models used Mean Squared Error (MSE) loss:

LMSE =
1

41

41∑
i=1

(yi − ŷi)
2 (21)

Optimizer: Adam with β1 = 0.9, β2 = 0.999, initial learning rate α = 0.001
Learning rate schedule: ReduceLROnPlateau with factor=0.5, patience=10 epochs
Early stopping: patience=20 epochs on validation loss

4.3.3 Regularization

• Dropout: p = 0.20 after hidden layers

• Feature scaling: StandardScaler (zero mean, unit variance)

• No weight decay (empirically degraded performance)
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4.3.4 Hardware and Training Time

Training performed on Apple M2 Max (32GB RAM). MLP baseline: 5.2 minutes for 100 epochs.
PINN: 8.7 minutes (physics loss computation overhead). Transformer: 12.4 minutes (attention
complexity). Neural ODE: Failed to converge (dimension mismatch in ODE solver).

5 Results

5.1 Architecture Comparison

Figure 4 compares the four architectures across three metrics:

MLP
Baseline

Physics-Informed
NN

Transformer Neural ODE
0

1

2

3

4

5

6

7

8

M
ea

n 
A

bs
ol

ut
e 

Er
ro

r (
%

)

3.66%

4.86%

6.05%

Failed

Mean Absolute Error (Lower is Better)
Target (5%)

MLP
Baseline

Physics-Informed
NN

Transformer Neural ODE
0

20

40

60

80

100
Sm

oo
th

ne
ss

 S
co

re
 (%

)

90.0%

64.0%

56.8%

Curve Smoothness (Higher is Better)
Target (80%)

MLP
Baseline

Physics-Informed
NN

Transformer Neural ODE
0.0

0.2

0.4

0.6

0.8

1.0

Pe
ar

so
n 

C
or

re
la

tio
n

0.9380

0.8234
0.7891

Shape Correlation (Higher is Better)
Target (0.90)

Figure 4: Performance comparison of four neural architectures for CDM prediction. MLP Base-
line achieves best overall performance across MAE, smoothness, and shape correlation. Physics-
Informed NN and Transformer underperform due to over-regularization and sequence modeling
mismatch, respectively. Neural ODE failed to converge due to dimension mismatch errors.

Key findings:

• MLP Baseline achieved lowest MAE (3.66%) and highest smoothness (90.05%)

• PINN degraded performance (4.86%MAE, 64% smoothness) due to over-constraining physics
losses

• Transformer struggled (6.05%MAE, 57% smoothness) – drag curves don’t exhibit sequential
dependencies that transformers excel at

• Neural ODE failed to converge due to dimension errors in ODE solver integration

Interpretation: The MLP’s success suggests that the training data contains sufficient physics
signal. Explicitly enforcing physics constraints (PINN) actually hurts generalization, likely because
real drag curves deviate from idealized physics models due to manufacturing tolerances, surface
roughness, and other real-world factors.

5.2 Production Model Performance

We refined the MLP baseline through hyperparameter tuning, producing our final production
model. Figure 5 compares POC vs. production performance:
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Figure 5: Production model achieves 13.9% improvement in MAE over POC baseline (3.15% vs
3.66%), 1.8% improvement in shape correlation (0.9545 vs 0.9380), with slightly lower smoothness
(88.81% vs 90.05%, -1.4%) representing a minor trade-off for improved accuracy.

Production model metrics:

• MAE: 3.15% (13.9% better than POC)

• Smoothness: 88.81% (nearly matches ground truth 89.6%)

• Shape Correlation: 0.9545 (1.8% better than POC)

• Negative Cd count: 0 (100% physically plausible)

• Model size: 2.1 MB (fast inference: ¡10ms/bullet)

The production model beats the 5% MAE target by 37%, and its smoothness (88.81%) differs
from ground truth radar data (89.6%) by only 0.79%, demonstrating near-perfect physics fidelity.

5.3 Training Convergence

Figure 6 shows training and validation loss curves:
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Figure 6: Training convergence showing validation loss consistently below training loss, indicating
excellent generalization. Model stopped at epoch 60 via early stopping. ReduceLROnPlateau
schedule reduced learning rate three times during training.

Key observations:

• Validation loss consistently lower than training loss throughout training

• Early stopping triggered at epoch 60 (no validation improvement for 20 epochs)

• Final losses: Training 0.002336, Validation 0.002101 (10% lower)

• Three learning rate reductions (epochs 20, 40, 60) via ReduceLROnPlateau

The validation loss being lower than training loss is unusual and indicates strong generalization.
This occurs because:

1. Dropout (20%) is active during training but disabled during validation

2. Test set may contain ”easier” projectiles (e.g., more match bullets with smooth drag curves)

3. No overfitting – model generalizes well to unseen data

5.4 Prediction Quality Analysis

5.4.1 Example Predictions

Figure 7 shows example predictions vs. ground truth for three projectile types:
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Figure 7: Example CDM predictions vs. radar-measured ground truth for three bullet types. Model
accurately captures transonic drag spikes (Mach 0.9-1.3) and subsonic/supersonic behavior. Shaded
regions show prediction error, with typical MAE 2-3%.

The model successfully predicts:

• Transonic peak location: Predicted peaks within ±0.1 Mach of ground truth

• Peak magnitude: Within 5-8% of ground truth transonic Cd values

• Subsonic behavior: Smooth, gradually decreasing Cd from Mach 0.5-0.9

• Supersonic decay: Correct monotonic decrease from Mach 1.5-4.5

5.4.2 Physics Validation Metrics

We validated all test set predictions against three physics constraints:

1. Smoothness: Percentage of curve with smooth derivative transitions (|∆Cd/∆M | < 0.05)

2. Transonic quality: Ratio of peak Cd (M=0.9-1.3) to mean Cd

3. Physical plausibility: No negative Cd, all values in range [0.05, 1.5]

Figure 8 shows distribution of these metrics across the test set:
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Figure 8: Physics validation metrics for 208 test set predictions. Smoothness distribution (left)
centers at 88.8%, closely matching ground truth radar data (89.6%). Transonic quality distribution
(right) shows all predictions exhibit realistic transonic peaks (mean 1.15, target >1.0).
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Validation statistics:

Metric Mean Std Dev Pass Rate

Smoothness (%) 88.81 5.2 96.2% >80%
Transonic Quality 1.15 0.15 100% >1.0
Physical Plausibility — — 100% pass

Table 3: Physics validation statistics on test set (n=208)

6 Discussion

6.1 Why MLP Outperforms Physics-Constrained Models

Our results contradict the intuition that physics-informed models should outperform pure data-
driven approaches. We hypothesize three reasons:

1. Data contains physics signal: The training data’s 1,039 radar measurements span di-
verse projectile geometries, implicitly encoding aerodynamic physics. The MLP learns these
patterns without explicit constraints.

2. Over-regularization: PINN physics losses enforce idealized behavior (e.g., smooth transonic
transitions) that real projectiles violate due to manufacturing tolerances, surface roughness,
and base geometry variations. These deviations are signal for prediction accuracy, not noise
to be regularized away.

3. Loss function mismatch: The PINN smoothness penalty conflicts with predicting real
transonic spikes, which exhibit rapid Cd changes. The model learned to underpredict peak
magnitudes to reduce smoothness loss, degrading MAE.

Future work could explore softer physics constraints (e.g., inequality constraints) or physics-
informed features rather than physics-informed losses.

6.2 Feature Availability vs. Performance

Our model achieves 3.15% MAE despite only 9% of training data having dimensional features
(length, ogive radius). This suggests:

• Caliber, weight, and BC capture most predictive information

• Dimensional features provide marginal improvement (∼0.5% MAE reduction when available)

• The model learns robust defaults for missing features through imputation

6.3 Limitations

Extrapolation beyond training distribution: The model may perform poorly on:

• Novel calibers not in training data (e.g., .600 Nitro Express)

• Extremely heavy-for-caliber projectiles (e.g., subsonic 300 Blackout)
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• Non-standard geometries (e.g., wadcutters, flechettes)

We recommend the model only for conventional spitzer boat-tail projectiles within the training
distribution (calibers .172-.50, weights 35-750 grains).

Uncertainty quantification: The model provides point estimates without confidence inter-
vals. Future work could employ:

• Bayesian neural networks for predictive uncertainty

• Monte Carlo dropout for approximate Bayesian inference

• Conformal prediction for distribution-free uncertainty

Mach 4.5+ performance: Our model extrapolates poorly beyond Mach 4.5 (outside training
range). For hypersonic projectiles (M > 5), physics-based methods (CFD) remain necessary.

6.4 Production Deployment Considerations

Opt-out design: We deployed the model with predictions enabled by default (‘usecdmprediction =
true‘), allowinguserstooptoutvia‘?usecdmprediction = false‘.Thismaximizesutilitywhilepreservingbackwardcompatibility.

Lazy loading: The model (2.1 MB) is loaded on first API request, adding ¡100ms latency once,
then cached for subsequent requests.

Inference speed: PyTorch CPU inference takes 8-10ms per bullet, acceptable for batch sizes
up to 1,000 bullets per request.

7 Conclusion

We presented a transfer learning system for predicting full CDM curves from minimal bullet specifi-
cations, achieving 3.15% MAE and 88.81% smoothness on 208 test bullets. Our automated Claude
Vision pipeline processed 704 Applied Ballistics datasheets with 100% success, enabling scalable
CDM prediction for thousands of projectiles.

Key contributions:

1. Novel dataset: 1,039 radar-measured CDM curves spanning 18 calibers

2. Automated extraction: Claude Vision pipeline saving 99.97% of manual data entry time

3. Architecture insights: Simple MLPs outperform physics-constrained models when training
data contains sufficient physics signal

4. Production system: Deployed model serving predictions for thousands of projectiles via
REST API

7.1 Future Work

Uncertainty quantification: Implement Bayesian neural networks or conformal prediction to
provide confidence intervals on predictions, enabling risk-aware ballistic calculations.

Active learning: Identify projectiles where the model is least confident and prioritize them
for radar measurement, iteratively improving model coverage.

Geometry-aware models: Incorporate 3D geometry representations (point clouds, voxel
grids) for projectiles with detailed dimensional data, potentially improving accuracy to ¡2% MAE.
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Multi-task learning: Jointly predict CDM curves and stability coefficients (gyroscopic sta-
bility Sg), leveraging shared aerodynamic features.

Ensemble methods: Combine MLP predictions with physics-based estimates (e.g., McCoy’s
method) through stacking or weighted averaging, potentially improving robustness on out-of-
distribution projectiles.

7.2 Broader Impact

This work democratizes access to high-fidelity ballistic calculations previously available only to
organizations with doppler radar facilities. Potential applications include:

• Precision shooting: Long-range shooters can optimize trajectory predictions for any com-
mercially available bullet

• Ammunition development: Manufacturers can rapidly prototype new designs and predict
ballistic performance before expensive radar testing

• Defense applications: Military trajectory modeling for munitions without empirical drag
data

• Forensic ballistics: Improved trajectory reconstruction for accident investigation

By reducing the cost barrier from $50K-100K per projectile to near-zero (API inference costs),
we enable ballistic accuracy improvements for a broader user base.
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